Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38540357

RESUMO

While animal model studies have extensively defined the mechanisms controlling cell diversity in the developing mammalian lung, there exists a significant knowledge gap with regards to late-stage human lung development. The NHLBI Molecular Atlas of Lung Development Program (LungMAP) seeks to fill this gap by creating a structural, cellular and molecular atlas of the human and mouse lung. Transcriptomic profiling at the single-cell level created a cellular atlas of newborn human lungs. Frozen single-cell isolates obtained from two newborn human lungs from the LungMAP Human Tissue Core Biorepository, were captured, and library preparation was completed on the Chromium 10X system. Data was analyzed in Seurat, and cellular annotation was performed using the ToppGene functional analysis tool. Transcriptional interrogation of 5500 newborn human lung cells identified distinct clusters representing multiple populations of epithelial, endothelial, fibroblasts, pericytes, smooth muscle, immune cells and their gene signatures. Computational integration of data from newborn human cells and with 32,000 cells from postnatal days 1 through 10 mouse lungs generated by the LungMAP Cincinnati Research Center facilitated the identification of distinct cellular lineages among all the major cell types. Integration of the newborn human and mouse cellular transcriptomes also demonstrated cell type-specific differences in maturation states of newborn human lung cells. Specifically, newborn human lung matrix fibroblasts could be separated into those representative of younger cells (n = 393), or older cells (n = 158). Cells with each molecular profile were spatially resolved within newborn human lung tissue. This is the first comprehensive molecular map of the cellular landscape of neonatal human lung, including biomarkers for cells at distinct states of maturity.


Assuntos
Perfilação da Expressão Gênica , Pulmão , Humanos , Camundongos , Animais , Pulmão/metabolismo , Transcriptoma/genética , Fenótipo , Pericitos , Mamíferos/genética
2.
Nature ; 628(8007): 442-449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538798

RESUMO

Whereas oncogenes can potentially be inhibited with small molecules, the loss of tumour suppressors is more common and is problematic because the tumour-suppressor proteins are no longer present to be targeted. Notable examples include SMARCB1-mutant cancers, which are highly lethal malignancies driven by the inactivation of a subunit of SWI/SNF (also known as BAF) chromatin-remodelling complexes. Here, to generate mechanistic insights into the consequences of SMARCB1 mutation and to identify vulnerabilities, we contributed 14 SMARCB1-mutant cell lines to a near genome-wide CRISPR screen as part of the Cancer Dependency Map Project1-3. We report that the little-studied gene DDB1-CUL4-associated factor 5 (DCAF5) is required for the survival of SMARCB1-mutant cancers. We show that DCAF5 has a quality-control function for SWI/SNF complexes and promotes the degradation of incompletely assembled SWI/SNF complexes in the absence of SMARCB1. After depletion of DCAF5, SMARCB1-deficient SWI/SNF complexes reaccumulate, bind to target loci and restore SWI/SNF-mediated gene expression to levels that are sufficient to reverse the cancer state, including in vivo. Consequently, cancer results not from the loss of SMARCB1 function per se, but rather from DCAF5-mediated degradation of SWI/SNF complexes. These data indicate that therapeutic targeting of ubiquitin-mediated quality-control factors may effectively reverse the malignant state of some cancers driven by disruption of tumour suppressor complexes.


Assuntos
Complexos Multiproteicos , Mutação , Neoplasias , Proteína SMARCB1 , Animais , Feminino , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Sistemas CRISPR-Cas , Edição de Genes , Neoplasias/genética , Neoplasias/metabolismo , Proteína SMARCB1/deficiência , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Proteólise , Ubiquitina/metabolismo
3.
Cell Rep ; 41(11): 111825, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36516770

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) sustain lifelong hematopoiesis. Mutations of pre-mRNA splicing machinery, especially splicing factor 3b, subunit 1 (SF3B1), are early lesions found in malignancies arising from HSPC dysfunction. However, why splicing factor deficits contribute to HSPC defects remains incompletely understood. Using zebrafish, we show that HSPC formation in sf3b1 homozygous mutants is dependent on STAT3 activation. Clinically, mutations in SF3B1 are heterozygous; thus, we explored if targeting STAT3 could be a vulnerability in these cells. We show that SF3B1 heterozygosity confers heightened sensitivity to STAT3 inhibition in zebrafish, mouse, and human HSPCs. Cells carrying mutations in other splicing factors or treated with splicing modulators are also more sensitive to STAT3 inhibition. Mechanistically, we illustrate that STAT3 inhibition exacerbates aberrant splicing in SF3B1 mutant cells. Our findings reveal a conserved vulnerability of splicing factor mutant HSPCs that could allow for their selective targeting in hematologic malignancies.


Assuntos
Hematopoese , Peixe-Zebra , Camundongos , Humanos , Animais , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Peixe-Zebra/metabolismo , Hematopoese/genética , Splicing de RNA/genética , Células-Tronco Hematopoéticas/metabolismo , Mutação/genética , Fosfoproteínas/metabolismo , Fator de Transcrição STAT3/genética
4.
Nat Cell Biol ; 24(10): 1475-1486, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36202972

RESUMO

Current dogma asserts that the foetal liver (FL) is an expansion niche for recently specified haematopoietic stem cells (HSCs) during ontogeny. Indeed, between embryonic day of development (E)12.5 and E14.5, the number of transplantable HSCs in the murine FL expands from 50 to about 1,000. Here we used a non-invasive, multi-colour lineage tracing strategy to interrogate the embryonic expansion of murine haematopoietic progenitors destined to contribute to the adult HSC pool. Our data show that this pool of fated progenitors expands only two-fold during FL ontogeny. Although Histone2B-GFP retention in vivo experiments confirmed substantial proliferation of phenotypic FL-HSC between E12.5 and E14.5, paired-daughter cell assays revealed that many mid-gestation phenotypic FL-HSCs are biased to differentiate, rather than self-renew, relative to phenotypic neonatal and adult bone marrow HSCs. In total, these data support a model in which the FL-HSC pool fated to contribute to adult blood expands only modestly during ontogeny.


Assuntos
Células-Tronco Hematopoéticas , Fígado , Camundongos , Animais
5.
Nat Commun ; 13(1): 5403, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109585

RESUMO

While adult bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs) and their extrinsic regulation is well studied, little is known about the composition, function, and extrinsic regulation of the first HSPCs to enter the BM during development. Here, we functionally interrogate murine BM HSPCs from E15.5 through P0. Our work reveals that fetal BM HSPCs are present by E15.5, but distinct from the HSPC pool seen in fetal liver, both phenotypically and functionally, until near birth. We also generate a transcriptional atlas of perinatal BM HSPCs and the BM niche in mice across ontogeny, revealing that fetal BM lacks HSPCs with robust intrinsic stem cell programs, as well as niche cells supportive of HSPCs. In contrast, stem cell programs are preserved in neonatal BM HSPCs, which reside in a niche expressing HSC supportive factors distinct from those seen in adults. Collectively, our results provide important insights into the factors shaping hematopoiesis during this understudied window of hematopoietic development.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Animais , Feminino , Feto , Hematopoese , Camundongos , Parto , Gravidez
6.
Blood ; 140(25): 2684-2696, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-35914226

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy targeting T-cell acute lymphoblastic leukemia (T-ALL) faces limitations such as antigen selection and limited T-cell persistence. CD7 is an attractive antigen for targeting T-ALL, but overlapping expression on healthy T cells leads to fratricide of CD7-CAR T cells, requiring additional genetic modification. We took advantage of naturally occurring CD7- T cells to generate CD7-CAR (CD7-CARCD7-) T cells. CD7-CARCD7- T cells exhibited a predominantly CD4+ memory phenotype and had significant antitumor activity upon chronic antigen exposure in vitro and in xenograft mouse models. Based on these encouraging results, we next explored the utility of CD7- T cells for the immunotherapy of CD19+ hematological malignancies. Direct comparison of nonselected (bulk) CD19-CAR and CD19-CARCD7- T cells revealed that CD19-CARCD7- T cells had enhanced antitumor activity compared with their bulk counterparts in vitro and in vivo. Lastly, to gain insight into the behavior of CD19-CAR T cells with low levels of CD7 gene expression (CD7lo) in humans, we mined single-cell gene and T-cell receptor (TCR) expression data sets from our institutional CD19-CAR T-cell clinical study. CD19-CARCD7lo T cells were present in the initial CD19-CAR T-cell product and could be detected postinfusion. Intriguingly, the only functional CD4+ CD19-CAR T-cell cluster observed postinfusion exhibited CD7lo expression. Additionally, samples from patients responsive to therapy had a higher proportion of CD7lo T cells than nonresponders (NCT03573700). Thus, CARCD7- T cells have favorable biological characteristics and may present a promising T-cell subset for adoptive cell therapy of T-ALL and other hematological malignancies.


Assuntos
Neoplasias Hematológicas , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Camundongos , Animais , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptores de Antígenos de Linfócitos T , Imunoterapia Adotiva , Neoplasias Hematológicas/terapia , Imunoterapia , Antígenos CD19
7.
Cell Rep ; 40(9): 111253, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-36044839

RESUMO

Activating KRAS mutations and functional loss of members of the SWI/SNF complex, including ARID1A, are found together in the primary liver tumor cholangiocarcinoma (CC). How these mutations cooperate to promote CC has not been established. Using murine models of hepatocyte and biliary-specific lineage tracing, we show that Kras and Arid1a mutations drive the formation of CC and tumor precursors from the biliary compartment, which are accelerated by liver inflammation. Using cultured cells, we find that Arid1a loss causes cellular proliferation, escape from cell-cycle control, senescence, and widespread changes in chromatin structure. Notably, we show that the biliary proliferative response elicited by Kras/Arid1a cooperation and tissue injury in CC is caused by failed engagement of the TGF-ß-Smad4 tumor suppressor pathway. We thus identify an ARID1A-TGF-ß-Smad4 axis as essential in limiting the biliary epithelial response to oncogenic insults, while its loss leads to biliary pre-neoplasia and CC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Animais , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Camundongos , Mutação/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo
8.
Mol Cell ; 82(13): 2472-2489.e8, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35537449

RESUMO

Disruption of antagonism between SWI/SNF chromatin remodelers and polycomb repressor complexes drives the formation of numerous cancer types. Recently, an inhibitor of the polycomb protein EZH2 was approved for the treatment of a sarcoma mutant in the SWI/SNF subunit SMARCB1, but resistance occurs. Here, we performed CRISPR screens in SMARCB1-mutant rhabdoid tumor cells to identify genetic contributors to SWI/SNF-polycomb antagonism and potential resistance mechanisms. We found that loss of the H3K36 methyltransferase NSD1 caused resistance to EZH2 inhibition. We show that NSD1 antagonizes polycomb via cooperation with SWI/SNF and identify co-occurrence of NSD1 inactivation in SWI/SNF-defective cancers, indicating in vivo relevance. We demonstrate that H3K36me2 itself has an essential role in the activation of polycomb target genes as inhibition of the H3K36me2 demethylase KDM2A restores the efficacy of EZH2 inhibition in SWI/SNF-deficient cells lacking NSD1. Together our data expand the mechanistic understanding of SWI/SNF and polycomb interplay and identify NSD1 as the key for coordinating this transcriptional control.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Proteínas F-Box , Histona-Lisina N-Metiltransferase , Histona Desmetilases com o Domínio Jumonji , Proteínas do Grupo Polycomb , Proteína SMARCB1 , Cromatina/genética , Cromatina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo , Tumor Rabdoide/patologia , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética , Células Tumorais Cultivadas/metabolismo
9.
Sci Rep ; 12(1): 3026, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35194136

RESUMO

To better understand the molecular mechanisms of tendon healing, we investigated the Murphy Roth's Large (MRL) mouse, which is considered a model of mammalian tissue regeneration. We show that compared to C57Bl/6J (C57) mice, injured MRL tendons have reduced fibrotic adhesions and cellular proliferation, with accelerated improvements in biomechanical properties. RNA-seq analysis revealed that differentially expressed genes in the C57 healing tendon at 7 days post injury were functionally linked to fibrosis, immune system signaling and extracellular matrix (ECM) organization, while the differentially expressed genes in the MRL injured tendon were dominated by cell cycle pathways. These gene expression changes were associated with increased α-SMA+ myofibroblast and F4/80+ macrophage activation and abundant BCL-2 expression in the C57 injured tendons. Transcriptional analysis of upstream regulators using Ingenuity Pathway Analysis showed positive enrichment of TGFB1 in both C57 and MRL healing tendons, but with different downstream transcriptional effects. MRL tendons exhibited of cell cycle regulatory genes, with negative enrichment of the cell senescence-related regulators, compared to the positively-enriched inflammatory and fibrotic (ECM organization) pathways in the C57 tendons. Serum cytokine analysis revealed decreased levels of circulating senescence-associated circulatory proteins in response to injury in the MRL mice compared to the C57 mice. These data collectively demonstrate altered TGFB1 regulated inflammatory, fibrosis, and cell cycle pathways in flexor tendon repair in MRL mice, and could give cues to improved tendon healing.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regeneração/genética , Regeneração/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Traumatismos dos Tendões/fisiopatologia , Tendões/fisiologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/fisiologia , Cicatrização/genética , Cicatrização/fisiologia , Animais , Adesão Celular/genética , Adesão Celular/fisiologia , Ciclo Celular/genética , Ciclo Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Fibrose/genética , Inflamação/genética , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Modelos Animais , Tendões/citologia
10.
Blood Cancer Discov ; 2(6): 586-599, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34778799

RESUMO

Genomic characterization of pediatric patients with acute myeloid leukemia (AML) has led to the discovery of somatic mutations with prognostic implications. Although gene-expression profiling can differentiate subsets of pediatric AML, its clinical utility in risk stratification remains limited. Here, we evaluate gene expression, pathogenic somatic mutations, and outcome in a cohort of 435 pediatric patients with a spectrum of pediatric myeloid-related acute leukemias for biological subtype discovery. This analysis revealed 63 patients with varying immunophenotypes that span a T-lineage and myeloid continuum designated as acute myeloid/T-lymphoblastic leukemia (AMTL). Within AMTL, two patient subgroups distinguished by FLT3-ITD and PRC2 mutations have different outcomes, demonstrating the impact of mutational composition on survival. Across the cohort, variability in outcomes of patients within isomutational subsets is influenced by transcriptional identity and the presence of a stem cell-like gene-expression signature. Integration of gene expression and somatic mutations leads to improved risk stratification. SIGNIFICANCE: Immunophenotype and somatic mutations play a significant role in treatment approach and risk stratification of acute leukemia. We conducted an integrated genomic analysis of pediatric myeloid malignancies and found that a combination of genetic and transcriptional readouts was superior to immunophenotype and genomic mutations in identifying biological subtypes and predicting outcomes. This article is highlighted in the In This Issue feature, p. 549.


Assuntos
Leucemia Mieloide Aguda , Criança , Perfilação da Expressão Gênica , Genômica , Humanos , Leucemia Mieloide Aguda/diagnóstico , Mutação/genética , Prognóstico
11.
Nat Commun ; 12(1): 4155, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230480

RESUMO

The organization of an integrated coronary vasculature requires the specification of immature endothelial cells (ECs) into arterial and venous fates based on their localization within the heart. It remains unclear how spatial information controls EC identity and behavior. Here we use single-cell RNA sequencing at key developmental timepoints to interrogate cellular contributions to coronary vessel patterning and maturation. We perform transcriptional profiling to define a heterogenous population of epicardium-derived cells (EPDCs) that express unique chemokine signatures. We identify a population of Slit2+ EPDCs that emerge following epithelial-to-mesenchymal transition (EMT), which we term vascular guidepost cells. We show that the expression of guidepost-derived chemokines such as Slit2 are induced in epicardial cells undergoing EMT, while mesothelium-derived chemokines are silenced. We demonstrate that epicardium-specific deletion of myocardin-related transcription factors in mouse embryos disrupts the expression of key guidance cues and alters EPDC-EC signaling, leading to the persistence of an immature angiogenic EC identity and inappropriate accumulation of ECs on the epicardial surface. Our study suggests that EC pathfinding and fate specification is controlled by a common mechanism and guided by paracrine signaling from EPDCs linking epicardial EMT to EC localization and fate specification in the developing heart.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/metabolismo , Pericárdio/citologia , Pericárdio/metabolismo , Animais , Quimiocinas , Vasos Coronários/metabolismo , Embrião de Mamíferos , Transição Epitelial-Mesenquimal , Expressão Gênica , Coração , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso , Proteínas Nucleares , Pericárdio/embriologia , Fator de Resposta Sérica , Transdução de Sinais , Transativadores , Fatores de Transcrição/metabolismo , Transcriptoma
12.
Blood ; 138(18): 1740-1756, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34075391

RESUMO

The terminal maturation of human erythroblasts requires significant changes in gene expression in the context of dramatic nuclear condensation. Defects in this process are associated with inherited anemias and myelodysplastic syndromes. The progressively dense appearance of the condensing nucleus in maturing erythroblasts led to the assumption that heterochromatin accumulation underlies this process, but despite extensive study, the precise mechanisms underlying this essential biologic process remain elusive. To delineate the epigenetic changes associated with the terminal maturation of human erythroblasts, we performed mass spectrometry of histone posttranslational modifications combined with chromatin immunoprecipitation coupled with high-throughput sequencing, Assay for Transposase Accessible Chromatin, and RNA sequencing. Our studies revealed that the terminal maturation of human erythroblasts is associated with a dramatic decline in histone marks associated with active transcription elongation, without accumulation of heterochromatin. Chromatin structure and gene expression were instead correlated with dynamic changes in occupancy of elongation competent RNA polymerase II, suggesting that terminal erythroid maturation is controlled largely at the level of transcription. We further demonstrate that RNA polymerase II "pausing" is highly correlated with transcriptional repression, with elongation competent RNA polymerase II becoming a scare resource in late-stage erythroblasts, allocated to erythroid-specific genes. Functional studies confirmed an essential role for maturation stage-specific regulation of RNA polymerase II activity during erythroid maturation and demonstrate a critical role for HEXIM1 in the regulation of gene expression and RNA polymerase II activity in maturing erythroblasts. Taken together, our findings reveal important insights into the mechanisms that regulate terminal erythroid maturation and provide a novel paradigm for understanding normal and perturbed erythropoiesis.


Assuntos
Eritroblastos/metabolismo , Células Eritroides/metabolismo , RNA Polimerase II/metabolismo , Linhagem Celular , Cromatina/genética , Cromatina/metabolismo , Eritroblastos/citologia , Células Eritroides/citologia , Eritropoese , Regulação da Expressão Gênica no Desenvolvimento , Histonas/genética , Histonas/metabolismo , Humanos , RNA Polimerase II/genética , Transcrição Gênica
13.
Nat Commun ; 11(1): 4544, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917861

RESUMO

Stratification of enhancers by signal strength in ChIP-seq assays has resulted in the establishment of super-enhancers as a widespread and useful tool for identifying cell type-specific, highly expressed genes and associated pathways. We examine a distinct method of stratification that focuses on peak breadth, termed hyperacetylated chromatin domains (HCDs), which classifies broad regions exhibiting histone modifications associated with gene activation. We find that this analysis serves to identify genes that are both more highly expressed and more closely aligned to cell identity than super-enhancer analysis does using multiple data sets. Moreover, genetic manipulations of selected gene loci suggest that some enhancers located within HCDs work at least in part via a distinct mechanism involving the modulation of histone modifications across domains and that this activity can be imported into a heterologous gene locus. In addition, such genetic dissection reveals that the super-enhancer concept can obscure important functions of constituent elements.


Assuntos
Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Loci Gênicos/genética , Ativação Transcricional , Acetilação , Animais , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Conjuntos de Dados como Assunto , Embrião de Mamíferos , Eritroblastos , Feminino , Feto , Código das Histonas/genética , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Regiões Promotoras Genéticas/genética , RNA-Seq
14.
Epigenetics Chromatin ; 13(1): 16, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-32178723

RESUMO

BACKGROUND: SETD8 is the sole methyltransferase capable of mono-methylating histone H4, lysine 20. SETD8 and H4K20me1 play a role in a number of essential biologic processes, including cell cycle progression, establishment of higher order chromatin structure, and transcriptional regulation. SETD8 is highly expressed in erythroid cells and erythroid deletion of Setd8 is embryonic lethal by embryonic day 11.5 (E11.5) due to profound anemia, suggesting that it has an erythroid-specific function. The function of SETD8 in the hemopoietic system is poorly understood. The goal of our study was to gain insights into the function of SETD8 during erythroid differentiation. RESULTS: We performed ATAC-seq (assay for transposase-accessible chromatin) on sorted populations of E10.5 Setd8 mutant and control erythroblasts. Accessibility profiles were integrated with expression changes and a mark of heterochromatin (H3K27me3) performed in wild-type E10.5 erythroblasts to further understand the role of SETD8 in erythropoiesis. Data integration identified regions of greater chromatin accessibility in Setd8 mutant cells that co-located with H3K27me3 in wild-type E10.5 erythroblasts suggesting that these regions, and their associated genes, are repressed during normal erythropoiesis. The majority of these more accessible regions were located in promoters and they frequently co-located with the NFY complex. Pathway analysis of genes identified through data integration revealed stemness-related pathways. Among those genes were multiple transcriptional regulators active in multipotent progenitors, but repressed during erythroid differentiation including Hhex, Hlx, and Gata2. Consistent with a role for SETD8 in erythroid specification, SETD8 expression is up-regulated upon erythroid commitment, and Setd8 disruption impairs erythroid colony forming ability. CONCLUSION: Taken together, our results suggest that SETD8 is an important regulator of the chromatin landscape during erythroid differentiation, particularly at promoters. Our results also identify a novel role for Setd8 in the establishment of appropriate patterns of lineage-restricted gene expression during erythroid differentiation.


Assuntos
Montagem e Desmontagem da Cromatina , Eritropoese , Histona-Lisina N-Metiltransferase/metabolismo , Fatores de Transcrição/genética , Animais , Linhagem Celular , Células Cultivadas , Eritroblastos/citologia , Eritroblastos/metabolismo , Histona-Lisina N-Metiltransferase/genética , Humanos , Camundongos , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...